

Digitalization as a Lever for Sustainability

WG6: Reduce Energy Consumption

Maximilian Irlbeck, Svenja Schött, Robin Welsch, Fiona Draxler und weitere

Where can we make a contribution from an HCI perspective?

- How can we make people become activists?
- How can we make it seem cool (again)?
- We can visualize things

What are the current problems?

- Lack of information:
 - What is a good decision? What steps are necessary to change the system?
 - How much does an elevator ride "cost"? does this have a big impact or not?
 - No general overview of energy consumption available, e.g. of communal buildings such as schools
- Lack of empowerment to make decisions
 - e.g. Heating has a lot of impact but landlords have no incentive to install more effective heating
 - renters have no influence on heating systems that owners install;
 - there is little information on electricity use available
- Lack of incentives
 - engineers/builders have to guarantee that a system works
 - Distribution of roles
 - almost no PV installed in cities
 - global projects impossible
 - Energy as an abstract problem. Immediate impact cannot be felt
 - No incentives for energy providers (including communal providers) to change regulation
- Lack of legislation (that changed things for electric charging stations, for example)
 - E.g., legislation is only introduced for new buildings/..., not for existing ones
- Saving energy is not always the best option, for example when it's sunny
- Generation/lifetime problem
- Too much effort

Approaches:

- Grid-ready devices that adapt to current energy prices have been tested and did not
- Targeted heating: heat only where I am located

Digitalization as a Lever for Sustainability

- Tracking down old technology that makes too much of an impact -> penalize stupidity
- Putting the right price tag on CO2
- determining microclimate, e.g. air flow
- PV kits for the balcony, modular solutions
- making your energy balance visible
- drone evaluation: state of buildings, heat production
- insulation + heat pumps

HCI Approaches

- Design friction: increase the effort to do things at unsuitable moments, e.g.
 - you need to press more buttons to make the dishwasher run at a time when energy is more expensive
 - in winter, the eco mode of your car only runs at 60 km/h
- Regulation / System design: the lowest energy setting needs to be set as the default one
 - "Öko by design"
 - We use people's laziness (software defaults: Mackay, W. E. (1991). Triggers and barriers to customizing software. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems Reaching through Technology -CHI '91, 153-160. https://doi.org/10.1145/108844.108867)
- Visualization
 - energy consumption of household devices
 - global visualization
 - publicly available eco balance of companies, communal infrastructure certification
- Add an employer eco rating in kununu