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ABSTRACT
We are often confronted with information interfaces designed
in an unfamiliar language, especially in an increasingly global-
ized world, where the language barrier inhibits interaction with
the system. In our work, we explore the design space for build-
ing interfaces that can detect the user’s language proficiency.
Specifically, we look at how a user’s gaze properties can be
used to detect whether the interface is presented in a language
they understand. We report a study (N=21) where participants
were presented with questions in multiple languages, whilst
being recorded for gaze behavior. We identified fixation and
blink durations to be effective indicators of the participants’
language proficiencies. Based on these findings, we propose
a classification scheme and technical guidelines for enabling
language proficiency awareness on information displays using
gaze data.

ACM Classification Keywords
H.5.m Information interfaces and presentation (e.g., HCI):
Miscellaneous.; H.1.2 Model and Principles: User/Machine
Systems—Human information processing

Author Keywords
Eye-tracking; machine learning; language-aware interfaces;
adaptive interfaces.

INTRODUCTION
In an increasingly globalized world, users are constantly ex-
posed to unfamiliar cultures and languages. Concurrently,
our lives are increasing reliant on digital technology as our
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Hvad er den første 
bogstav i dit fornavn?

What is the �rst
letter in your name?

Figure 1. User interacting with a language-aware interface.

environments - in public, at work or at home - are pervaded
by digital artifacts such as public displays and shared mobile
devices. When visiting foreign countries, especially those that
are multilingual, users are often faced with the challenge of
navigating an interface in an unfamiliar language. While alter-
native language versions are often available, accessing them
(usually through a poorly visible button or a submenu) tend to
be cumbersome. The problem is compounded by screen space
limitations. In this paper, we present work that contributes
towards a new generation of systems that will detect a user’s
language proficiencies and can subsequently adapt their inter-
face language to their users’ perceived proficiency, as depicted
in Figure 1.

Our daily communications afford us interpersonal cues that
allow us to moderate our language and responses to our conver-
sation partners. Telltale facial expressions and body language
can indicate the interest and engagement levels of our conver-
sation partners. Gaze can readily indicate whether they are
focused on the conversation or distracted by something else,
such as looking at their phone or recognizing another person
in the background [15, 19]. We are typically able to interpret
these implicit signals and adapt our conversation strategy by
changing the topic or requesting attention. Here, we explore
how user interfaces can use information, such as its user’s
gaze, to recognize its user’s state.
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In this paper, we contribute to the understanding about human
gaze properties to build interfaces that recognize the lack of
understanding of the user. Specifically, we investigate whether
we can effectively detect if the user is confused by the inter-
face language. We examined users’ gaze properties (gathered
through an embedded eye tracker) when reading short sen-
tences in multiple languages. Afterwards, we evaluated how
gaze properties can be interpreted to detect if the interface is
presented in a language that the user understands.

Eye tracking is widely used in the domain of reading analy-
sis. However, existing approaches have usually focused on
one specific language and are used for post-hoc analysis [31,
50]. We propose an approach that relies on characteristic gaze
properties to infer a user’s requirement for real-time assistance.
The goal is to recognize a user’s likelihood for comprehending
displayed text, given limited gaze data that is based on read-
ing a short sentence in a given language. We anticipate that
users are unlikely to persist in using a system beyond a single
sentence, in a language that they lack proficiency in. In this
regard, the current work contrasts with eye movement research
that is based on reading entire documents. When working with
eye gaze interaction, prior calibration often is a hindrance for
readily available interaction. We will discuss the aforemen-
tioned limitations and analyze their impact on user experience
given our approach. To the best of our knowledge, this work
represents the first approach to rapid detection of language
comprehension for the design of information displays.

In our study with 21 participants we recorded their eye move-
ments while presenting them simple questions in varying lan-
guages. The participants were tasked to answer the shown
questions to the best of their abilities. Depending on their lan-
guage proficiency, some questions could be answered easily
while others were impossible.

We evaluate the feasibility of language-aware interfaces, based
on our experimental results. First, we identified that users
exhibited shorter average fixation duration as well as longer
average and summed blink duration, when presented with lan-
guages that they were proficient in. Based on these results,
we developed a classification strategy and provide some tech-
nical guidelines to facilitate real-time language proficiency
detection on information displays.

This paper is organized as follows. First, we review past efforts
in using eye-tracking for assessing language comprehension
and data processing methods used to that end. Next, we pro-
vide the detail of the experiment we conducted. Following
this, we present the analysis of our experimental results, which
form the basis of building an automated classifier for rating
our users’ language comprehension. We discuss the details
of the classifier and its alternative designs in the following
sections. Finally, we provide technical guidelines and mini-
mum requirements for implementing language comprehension
detection using gaze properties on information displays.

RELATED WORK
A user’s gaze can be used as an explicit input to computing in-
terfaces, albeit to varying levels of effectiveness. Most promi-
nently, gaze has been used as a substitute or supplement for

manual cursor control [45, 40], e.g. in MAGIC-Pointing [51]
and typing [29]. Interfaces have also been developed that re-
spond to distinctive and contrived gaze gestures [11] as a form
of explicit interaction.

Besides this, gaze can also serve as an implicit input for
context-aware applications, such as activity recognition [6]
while wearing custom made EOG1-glasses [5]. iTourist [36]
successfully plans city trips based on recorded gaze patterns.
Gaze contingent displays [12] use the gaze point of the user to
define a region of interest. The information is used to highlight
specific elements in the user’s view [2] or to selectively render
foveated regions at high resolution in order to save computing
costs [17, 32].

Other work in the domain of implicit interaction focuses on
human-like interaction in virtual environments, e.g. for con-
versational agents [47, 49]. It has been shown that gaze direc-
tional cues can serve as a predictor for conversational atten-
tion. Moreover, virtual agents that respond to users’ gaze have
been shown to increase their users’ emotional response and
allocated attention [30]. This suggests that gaze-responsive
systems are perceived as being more human-like in their inter-
actions and, hence, elicit more user-attention.

Computer systems can also rely on gaze inputs to assist users
in accomplishing their task. In tutoring systems, the user’s
gaze information can be relied on by the system to determine
when it is necessary to provide feedback and guidance to the
user [10]. For example, patterns in gaze behavior could reveal
that the user is confused by a given topic, which prompts the
system to provide further guidance [34]. Learning new topics
often involves reading provided material, such as a book, a
document or even a simple time-table of a bus station. The
connection between eye movements and reading has already
been researched thoroughly [37, 38]. There exist psycho-
logically plausible models that describe many phenomena in
reading [24, 39].

In recent years, researchers built upon these findings to exam-
ine language proficiencies [31, 50], as well as develop systems
that have educational purposes. These include e.g. real-time
annotations [7, 3, 26] or translations during reading [48]. In
this scenario the users’ eye movements provide contextual
information about what they are reading, how fast [28] or
even how much they understand [21] and provide assistance
accordingly [44, 22]. These systems showcase the capabili-
ties of gaze-assisted language detection and/or translation. A
vital part of real-time assistive systems is the exact point in
time when to assist, e.g. by displaying a translation. Besides
manual activation via gestures or being reliant on user profiles,
we explore an implicit method that can be used for real-time
interaction.

In our work, we adopt the paradigm of real-time gaze analysis
to enable interactive systems that react upon the user’s gaze
as well as utilize the research findings on reading processes.
We aim to combine the real-time properties of gaze-contingent
displays with the inherently longer lasting process of recog-
nizing the users understanding based on their reading patterns.

1Electrooculography
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In contrast to past work on proficiency analysis, we propose
a method than only relies on a short sentence in the respec-
tive language, hence enabling interactive interfaces. In our
study, we evaluate the feasibility and accuracy of language
proficiency detection on information displays.

METHOD
For our study design, we considered previous research findings
on eye movements and reading to identify gaze characteris-
tics that could be viable candidates for inferring language
proficiency in our application context.

Research reports an average duration for fixations of about
200ms to 250ms and an average saccade length of 7 to 9
letters, but fixation durations can range from 50ms to 500ms
depending on the context of the task and user state. Pertinently,
the fixation durations increase with conceptually more difficult
text, leading us to hypothesize that fixation durations should
vary with a user’s language proficiency. In addition, text
difficulty is reported to correlate with saccade length as well as
the frequency of saccade regressions2 and refixations. Hence,
“difficult” languages should exhibit lower saccade length and a
higher frequency3 of regressions and refixations. [37, 16]

Moreover, blink rate and pupil diameters have been reported
to be associated with cognitive load and human information
processing. For example, Siegle et al. [46] demonstrated a
phasic increase of blinks prior and pursuant to the anticipation
of an increase in the load of information processing, which was
manipulated with basic psychological tests (i.e., Stroop task,
digit-sorting task). Pupil dilation, on the other hand, reflected
sustained information processing, over longer periods.

Based on these previous findings, we formulate our first re-
search question:

RQ1: Can we determine whether a user is able to use the
interface in a given language from gaze properties available
by a gaze tracker?

To implement a real-time and language-aware user interface, it
is vital that the system is able to tell a user’s proficiency in the
display language in a mere seconds. This implies that the users
should only be presented with at most a few sentences of an
unknown language before the system decides on the respective
proficiency. This is the basis for the second research question:

RQ2: Can we determine whether a user understands the cur-
rent interface language fast enough to build efficient language-
aware interfaces? If so, what are the technical requirements?

Based on these questions, we investigate the following hy-
potheses in our study:

H1: Increased language proficiency level will result in a lower
average gaze fixation duration.

H2: Increased language proficiency level will decrease the
number of refixations in a given time period.

2Saccades opposite to the reading direction
3Standard frequency is about 10 to 15%.

Lower average gaze fixation duration as well as lower refixa-
tion ratio is connected to text difficulty when reading [37]. In
our study we aim to vary text difficulty by changing the display
language, hence creating several different text difficulty levels.
Participants should therefore find it easier to answer questions
in their proficient languages.

H3: Increased language proficiency level will increase the
average blink duration.

H4: Increased language proficiency level will increase the
total blink ratio.

Proficient users of a language should experience lower cogni-
tive load during reading than non-proficient users. We assume
that this increases blink duration and total blink ratio when
presented with a language in which the user is proficient. Dur-
ing unknown languages cognitive load increases as the user is
trying to figure out the question, hence blinks are less frequent.

If we reflect on one primary use case – public displays in
commuting areas – the user usually looks for predefined in-
formation (e.g. bus departure, flight details). The method of
presenting this information is often ordered and predictable,
such as a time-table, and does not change across languages.
Yet this is of no help for the user if he cannot locate the name
of his destination or instructions for the payment process.

Information like this is expressed in simple sentences as well
as simple language, to ensure readability. Hence, we chose
our questions to be of “Basic User” ([8], p. 23) level with
regard to the Common European Framework of Reference for
Languages (CEFR) [8]. This framework defines six levels of
foreign language proficiency: basic (A1, A2), independent
(B1, B2) and proficient user (C1, C2) [8]. For our study we
added an extra non-proficient level (X).

We collected questions in 13 different languages (15 questions
each). By choosing to display simple questions to the partic-
ipants, we provide an engaging task [20] as reading the text
is required to answer correctly. The respective translations
were provided by either native or highly proficient users of
that language. Table 1 shows a few example questions. Most
are part of the Indo-European language family [9], yet we
included some outliers such as Finnish and Hungarian as well
as languages not using the Latin alphabet (Greek, Arabic) to
analyze their effect. See Table 2 for a complete overview
on the used languages and the respective proficiency levels
exhibited by our participants.

Participants
We recruited twenty-nine participants from the University of
Stuttgart and the Stuttgart Media University via mailing lists.
The data of 21 participants (12 females, age: 19-36 years) were
used for further analysis. The eye-tracking data of three partic-
ipants were removed because glasses and make-up interfered
with the reliability of eye-movement recording. We excluded
the data of five more participants, as the recording was not
stable enough during the whole study4. Two participants had
prior experience with eye-tracking studies. Out of the 21 par-
ticipants, 17 were native German readers, two were native
4Participants started to move more towards the end of the study.
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Language Example questions

English How many days are within a week? What is the first letter of your first name?
French Combien de jours y a-t-il dans une semaine? Quelle est la première lettre de votre prénom?
Danish Hvor mange dage er der i en uge? Hvad er det første bogstav i dit fornavn?
Finnish Kuinka monta päivää on viikossa? Mikä on etunimesi ensimmäinen kirjain?

Table 1. Example questions used in our study in four different languages.

Language Proficiencies of participants

English B2, C1, C2
German X, B2, C1, C2
Danish X
Dutch X, A1
Finnish X
French X, A1, A2, B1, B2
Greek X, A1, C1
Romanian X
Spanish X, A1, A2, B1, C2
Turkish X
Slovenian X
Arabic X, A1
Hungarian X

Table 2. Languages used in this study and respective proficiencies
present in our participant base.

English readers as well as one native Spanish and Indonesian
participant. All participants had normal or corrected-to-normal
vision. Each participant was paid an allowance of 10 Euros.

Apparatus
Our setup consisted of a 22 inch LCD display (resolution:
1680x1050) and a remote eye tracker (SMI RED 250; 250Hz
sampling frequency) that was positioned below the display.
Our participants were seated at a distance that felt comfortable
for them and well within the reliable tracking range of the
system (0.5m−0.7m) in an enclosed cubicle. Figure 2 shows
a picture of the apparatus.

Figure 2. Apparatus showing LCD monitor with attached eye tracking
device and participant during the study.

Procedure
After introducing the prospective participants to our study, we
handed them a detailed study description. It stated to follow
on-screen instructions worded as simple questions, that each
require a single key-press to answer. The study description
sheet additionally contained an example question. Prospective
participants were made aware to expect these questions in

different languages and to answer to the best of their knowl-
edge, yet favoring correctness over speed. The respective
answer could be given in any preferred language5. If a ques-
tion was impossible to answer, prospective participants were
made aware not to press anything and wait for the next ques-
tion. Timings between each question (10 seconds) and the
overall study time (two session of 12.5 minutes each) were
provided on the information sheet. The available answer time
of 10 seconds per question was conservatively chosen, prevent-
ing unnecessary pressure due to lack of time. After providing
informed consent, the participants were asked to complete a
demographic questionnaire, polling sex, age, work field, high-
est educational qualification, their native language and their
eyesight. They also rated their reading level for specific lan-
guages based on the provided CEFR’s self-assessment test6
([8], pp. 26-27). Additionally, the participants were asked
to provide their proficiency level for languages that were not
listed. The experimenter was present to answer any questions
that might arise.

Before starting the experiment, the eye tracking device was
calibrated using a five-point calibration. We only accepted
calibration accuracy below one degree of visual angle. During
the experiment, we sequentially displayed 150 questions to
the participants, in random order. Each question was visible
for exactly ten seconds and could be answered by a single
key press, such as one letter or one number (see Table 1).
Participant keystrokes were collected during this period. The
experiment was conducted in two sessions of 12.5 minutes
with an intervening rest period. It was possible to ask ques-
tions during the experiment, which occurred two times. The
respective experiment question was hence marked for deletion.
Before resuming with session two, another calibration analog
to the start of the experiment was performed. Ethical approval
for this study was obtained from the Ethics Committee at the
University of Konstanz.

Post-processing
We applied the following post processing steps to the obtained
eye-tracking data including event detection7 using a velocity-
based fixation algorithm [41] with a velocity threshold of
35 degrees of visual angle per second and blink detection
based on pupil diameter change. Eye movement events were
allocated to the respective question and any data after the
point in time when the participants provided an answer for the
respective question, as indicated by the recorded keystrokes,
was discarded. Note that we did not distinguish between wrong
5E.g. answering in one’s native language or in English.
6If needed. Most participants were familiar with the framework and
provided information based on language tests.
7utilizing the SMI Event Detector
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and correct answers, since language proficiency as stated by
the participants was used as ground truth. We observed a mean
answer time for all participants of 4.9 seconds with a standard
deviation of 0.2 seconds. Thus, we conservatively limited
the overall observation time for each question to a maximum
of 4.5 seconds. Additionally, we discarded fixations with
durations, less than 50ms and more than 600ms, that were
outside the range of reported values in reading research [37,
38, 43].

Measures
All measures were collected on a per question basis. We
derived the following metrics from the eye tracking data. For
fixations, we examined the average fixation duration. We
also recorded refixations that occurred when the user’s gaze
revisited the location of a previous fixation. This area was
bounded by a 30 pixel radius8 around the previous fixation’s
location. The chosen radius is a conservative interpretation
of the distance of consecutive fixations during reading [37].
The amount of refixations was normalized by the total fixation
count for the respective question (refixation ratio).

For blinks, we calculated average duration as well. Total blink
ratio relates the total blink duration to the respective answer
time of each question.

All the measures were grouped by the reported language profi-
ciency based on the CEFR [8]. Hence, we end up with seven
groups: non-proficient (X), basic user (A1, A2), independent
user (B1, B2) and proficient user (C1, C2).

Results
As mentioned before, we looked at data available after having
interacted with the screen for a maximum of 4.5 seconds or the
user’s respective answer time, whichever was shorter. Sample
size did vary for different metrics, e.g. if the user did not blink
during one particular question.

Average Fixation Duration (AFD)
The grand mean of AFD was 239.86ms (SD = 53.22ms). Par-
ticipants with C2 proficiency in the tested language exhib-
ited the shortest average fixation durations (M = 194.02ms,
SD = 37.24ms) while no knowledge of a given language pro-
duced the longest fixations (M = 249.19ms, SD = 53.04ms).
As all metrics in our experiment are unevenly distributed in
terms of proficiencies (participants have varying levels of pro-
ficiency in different languages), we decided to compute the
slope coefficient for each of the participants using ordinal lo-
gistic regression. We then conducted a t-test comparing the
obtained slope coefficients with a constant function. The test
shows that language proficiency has a significant effect on
AFD, t(20) =−3.78, p < 0.01.

Refixation Ratio (RFR)
The grand mean of RFR was 0.24 (SD = 0.15). Participants
with C2 proficiency in the tested language exhibited the lowest
refixation ratio (M = 0.15, SD = 0.13) while participants who
did not know the given language had the highest ratio (M =
0.26, SD = 0.15). Analogously to AFD, slope coefficients
8Covers roughly 1-2 letters.

Figure 3. Violin plot showing the distribution of the average fixation
duration (AFD) grouped by proficiency according to CEFR [8].

were computed and compared with y = 0 using a t-test. The
test showed that language proficiency had a significant effect
on RFR, t(20) =−2.48, p < 0.05.

Figure 4. Violin plot showing the distribution of refixation count
per overall fixation count (RFR) grouped by proficiency according to
CEFR [8].

Average Blink Duration (ABD)
The grand mean of ABD was 413.47ms (SD = 395.52ms).
Participants with C2 proficiency in the tested language ex-
hibited the longest average blink time (M = 752.05ms, SD =
391.00ms) while participants who did not know the given lan-
guage blinked the shortest (M = 306.41ms, SD = 332.29ms).
Again, we calculated slope coefficients for each participant
and used a t-test to compare with no slope yielding a result
of t(20) = 2.71, p < 0.05. Figure 5 shows the distribution of
average blink durations.

Figure 5. Violin plot showing the distribution of the average blink dura-
tion (ABD) grouped by proficiency according to CEFR [8].
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Total Blink Ratio (TBR)
The grand mean of TBR was 0.15 (SD = 0.14). Participants
with C2 proficiency in the tested language exhibited the high-
est total blink ratio (M = 0.30, SD = 0.14) while participants
who did not know the given language had the lowest ratio
(M = 0.11, SD = 0.11). Using a method analogous to the pre-
vious metrics, we obtained t(20) = 2.75, p < 0.05. Figure 6
shows the distribution of total blink ratio.

Figure 6. Violin plot showing the distribution of the ratio given total
blink duration and answer time (TBR) grouped by proficiency according
to CEFR [8].

Result Interpretation and Implications
Statistics on average fixation duration and refixation ratio
showed a significant effect of language proficiency on all
metrics. We conclude that increased language proficiency
levels will result in a lower AFD and a lower RFR (as t-scores
are negative). This confirms H1 and H2.

Our results indicate that average blink duration and total blink
ratio were significant metrics as well, confirming H3 and H4.
However, standard deviation was also quite high for these
metrics, which might lead to unstable classification results.
Especially for proficient levels (A to C), blink duration is quite
high compared to values found in literature [20]. This could
be due to participants “relaxing” during easy questions, which
relates to longer blink durations [20]. Nevertheless, simple
blink detection (e.g. via a RGB camera) could be an alternative
for systems where eye tracking is not feasible.

Our statistical analysis indicates that we can provide a positive
answer to RQ1. All metrics showed a significant difference
for non-proficient vs proficient users (except the B1 level),
indicating that our approach is feasible. In other words, pur
experiment shows that the eye gaze metrics we chose do carry
information about language comprehension.

The second research question (RQ2) concerned the technical
requirements of applying such an approach to language-aware
interfaces. In the next section, we pursue RQ2 further by
implementing classifiers for language proficiency detection.

BUILDING A LANGUAGE-AWARE SYSTEM
In the previous sections, we evaluated the statistic relevance
of certain metrics extracted from our eye-tracking data. AFD,
ABD, TBR and RFR showed promising results in discerning
proficiency levels. Yet, to realize systems that support real-
time detection of language proficiency it is necessary to find
a discriminative feature set that defines certain proficiency

levels. Ideally, we want the margin between neighboring
levels as large as possible and choose these levels based on the
application scenario. In this section, we provide answers to our
second research question and evaluate the needed technical
requirements for language-aware interfaces.

We highlight specific factors that need to be considered when
implementing such an adaptive display. From an HCI perspec-
tive, we want to maximize the user experience when interact-
ing with the system such as providing assistance when needed
and only when needed. Furthermore, an interactive system
should be able to provide feedback in a reasonable time span.
Ideally, it should not take longer than a few seconds for the
system to make a decision. From a technical standpoint, we
might need to consider limitations that may arise with the ap-
plication scenario, such as low-cost hardware that will result
in noisy data. As such we tested our findings on an artificially
downsampled dataset.

Baseline Classifier
Based on our previous results, we decided to train a binary
classifier that predicts whether people are not proficient or
proficient (levels A to C) in the displayed languages. This
choice conforms with our aspired application scenario in two
ways. Firstly, public displays such as timetables exhibits “pre-
dictable information” [8] that can be read by a basic language
user (A level proficiency). Hence, the choice to include all
proficiency levels into one class seems reasonable. Secondly,
overeager assistance systems tend to be rejected by the users.
To achieve a good user experience, minimizing false profi-
ciency classification on proficient users should therefore be a
primary goal.

We constructed a dataset containing the following features
from our eye-tracking data as described in the previous sec-
tions: average fixation duration (AFD), refixation ratio (RFR),
average blink duration (ABD) and total blink ratio (TBR). We
used the same maximum observation time as before (4.5 sec-
onds). After balancing the class distribution, we evaluated the
dataset using 10-fold cross validation on four different com-
mon classifiers9. All classifiers were executed with standard
parameters. An overview on achieved accuracy is given in
Table 3.

J48 SVM NN BayesNet

Accuracy 78.3% 64.9% 78.8% 77.6%
F-Measure 78.3% 64.3% 78.8% 77.6%
Table 3. Accuracies and F-Measures for selected classifiers.

While most classifiers exhibited a similar average accuracy, it
is vital in our case to report the false positive rate (FPR) of
each class. As mentioned before, our primary goal was to keep
the ratio of falsely classifying proficient users (classified as
non-proficient) to a minimum, while our secondary goal was

9J48: Java derivate of C4.5 [35]
SVM: LibLINEAR package. L2-loss (dual form) [13]
Neural network: MultiLayer Perceptron [18]
BayesNet: Bayesian network [18]
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to maximize true positive rate (TPR) of either class. Table 4
shows more detailed descriptive statistics on the decision tree
J48, including false and true positive rate for both classes.
This allows us to spot irregularities that may arise between
classification accuracy of the two classes.

Class TPR FPR Precision Recall

NP 75.4% 18.8% 80.0% 75.4%
P 81.2% 24.6% 76.8% 81.2%

Table 4. Classifier statistics on J48 given proficient users (class P) and
non-proficient users (class NP).

True positive rate was higher for the class of proficient lan-
guage users (class P), yet this came with a higher false positive
rate as well. In other words, in 24.6% of cases we wrongly
classify a non-proficient user (class NP) as being proficient.
Of course this is inconvenient for the user as he will not be pro-
vided with the needed assistance. However, our primary goal
was to keep the false positive rate of the class of non-proficient
users to a minimum. In the standard configuration J48 mis-
classified 18.8% of all instances as non-proficient when they
were in fact instances of proficient users. Hence, the system
would attempt to provide assistance although the user would
be able to read the given language, which is undesirable and
has a negative impact on user experience.

Figure 7 illustrates the top three levels of the resulting tree
model10. Average blink duration is used as a first separation
step. After just two tests (on ABD and AFD) almost 32%11

of instances are correctly assigned to the non-proficient class
(3.6% are wrongly classified in this step). The built tree ex-
hibits several of these “heavy” leaves that carry most of the
instances. This indicates that pruning may be a meaningful
strategy.

ABD

AFD

TBR

≤ 207

0 (845/95)

> 207

≤ 277

RFR

AFD

≤ 0.32

AFD

> 0.32

> 277

Figure 7. Top three levels of the built decision tree using J48 with stan-
dard parameters. ABD and AFD are given in milliseconds; TBR and
RFR are given as ratios. Leaf nodes (rectangles) indicate predicted class
(0 for NP; 1 for P) and show (correctly classified/misclassified) instances.
Values are rounded for visual clarity.

A more heavily pruned tree is shown in Figure 8, basing its
decision on only three remaining features (ABD, RFR and
AFD), while still achieving 77.64% accuracy. Additionally,

10using J48 and standard parameters
11845 out of a total of 2643 instances

true and false positive rate of each class do not change by more
than two percentage points, indicating that heavy pruning is
indeed a valid option. This avoids overfitting to the training
set and may generalize better for unseen data.

ABD

0 (1120/194)

≤ 277

RFR

1 (1233/263)

≤ 0.32

AFD

1 (71/12)

≤ 182

0 (220/99)

> 182

> 0.32

> 277

Figure 8. Complete decision tree using J48 and heavy pruning. ABD and
AFD are given in milliseconds; RFR is given as ratio. Leaf nodes (rect-
angles) indicate predicted class (0 for NP; 1 for P) and show (correctly
classified/misclassified) instances. Values are rounded for visual clarity.

Cost-Sensitive Classifier
To further reduce the false positive rate of the non-proficient
class, we introduced a different cost function for the classifier.
We penalized classifying proficient users as non-proficient
more severely. This is a compromise between maximizing
overall classification accuracy (results shown in Table 3 and
Table 4) and minimizing the false positive rate of one class.
We decided that not more than one out of ten users should
be wrongly classified as non-proficient. To achieve this goal,
misclassifying a proficient user had to be three times more
expensive than misclassifying a non-proficient user. Table 5
shows the results after applying such a function.

Class TPR FPR Precision Recall

NP 58.9% 9.90% 85.6% 58.9%
P 90.1% 41.1% 77.1% 74.5%

Table 5. Classifier statistics on cost-sensitive J48 (standard parameters)
given proficient users (class P) and non-proficient users (class NP).

Overall accuracy dropped only slightly to 74.5%, yet the gap
between the true positive rate of both classes increased. While
TPR of the proficient class increased12, the TPR of the non-
proficient class decreased to 58.9%. It was now more expen-
sive to classify as non-proficient, hence it was safer to classify
as proficient. The same applied for the false positive rates.
We successfully pushed the FPR of the non-proficient class
to below 10%, yet this also meant that the FPR of the profi-
cient class increased and fewer users were to get the needed
assistance.

12It was more likely to classify an instance as proficient.
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Class Distribution
Generally, it is important to adjust the cost function based on
the scenario and think about how to penalize wrong classifica-
tions. Besides the cost function, the distribution of instances
into respective classes is vital. In a different scenario, such
as displaying advertisements on public displays, it is more
favorable to emphasize highly proficient users. Since using
puns in advertisements to spark the interest of potential cus-
tomers is a common technique, aiming for a binary classifier
that separates C-level language users from other users is more
beneficial. If the users do not understand the display pun due
to their proficiency level being too low, it seems reasonable to
combine them with the non-proficient users. Table 6 shows
classification results for a grouping into the classes highly-
proficient HP (C1 and C2) and less-proficient LP (X, A1, A2,
B1 and B2). Overall accuracy was 79.3%. The false positive
rate for both classes was around 21%. Again, we can ask our-
selves whether misclassifying one class is more severe than
the other and adjust a cost function as we see fit.

Class TPR FPR Precision Recall

LP 79.2% 20.6% 79.3% 79.2%
HP 79.4% 20.8% 79.2% 79.4%

Table 6. Classifier statistics on J48 with different class distribution:
highly-proficient (class HP: C1 and C2) and less-proficient (class LP: X,
A1, A2, B1 and B2) users. Levels according to [8].

Recording Duration
As outlined previously, fast responsiveness and interactivity
are vital for an adaptive information display. Hence, we evalu-
ated a minimum recording duration that allowed for a sensible
classification of non-proficient users. For this purpose, we
limited the maximum observation time for our dataset in one
second intervals from one to five seconds13. Figure 9 shows
accuracy as well as true and false positive rate over time.
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Figure 9. Accuracy, true and false positive rate of proficient (class P: A1
to C2) and non-proficient (class NP: X) class given different maximum
observation times of recorded gaze data.

The classifier metrics did not change much when reducing
the maximum observation time to only three seconds. After
that, we saw a strong increase in the false positive rate of class

13Before then our dataset used a maximum observation time of 4.5
seconds

NP. Further investigation revealed that the classes exhibit a
strong overlap, thus making accurate classification difficult.
We believe that this is due to the reduced sample size, hence
allowing noise in the recording to have a larger influence.

Hardware Limitations
In this study, we used a high-quality eye-tracking device with
a sampling rate of 250Hz. However, eye-trackers for com-
mercial product integration can be expected to have lower
sampling rates. To evaluate the viability of our approach for
its stated purpose, we downsampled14 our recording data to the
following sampling rates 125Hz, 62.5Hz and 31.25Hz, which
approximated the sampling rates of low-cost eye-tracking de-
vices.

Reducing sampling rate introduces noise in the event (e.g. fix-
ation, saccades) detection of eye-movement behavior. Here,
we showed the effects for the average fixation duration. A clas-
sification accuracy of 64.7% was achieved from the original
sampled data (i.e., 250Hz). Figure 10 illustrates how classifi-
cation accuracy, as well as true and false positive rate for each
class, varied when decreasing the sampling rate.
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Figure 10. Accuracy, true and false positive rate of proficient (class P:
A1 to C2) and non-proficient (class NP: X) class given different sampling
rates of the underlying gaze dataset (logarithmic scale).

Sampling at a rate of 125Hz had only minor influence on the
classification results. Further downsampling drastically re-
duced true positive rate of class NP (FPR of class P increases),
yet the false positive rate of the non-proficient class stayed
constant. Hence, at a sampling rate of 62.5Hz detecting a
non-proficient speaker correctly was less likely. For the low-
est sampling rate 31.25Hz, FPR for the non-proficient class
strongly increased. At this rate, a sample was obtained every
32ms, which was about the mean difference that we found
between the two classes (NP and P) at high sampling rates.
Thus, temporal downsampling rendered information between
categories less discriminable and sensible classification was
not possible at this resolution.

DISCUSSION
Through the initial statistical analysis and our investigation
of how to build classifiers using our data set, we have shown
that rapid automated detection of language comprehension is
possible. The data we extracted from the user’s gaze enables

14By omitting every n-th sample.
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us to reliably predict their proficiency in a given language. It
needs to be noted that our proposed classifiers operate on a
coarse level. Their primary purpose is to determine whether
the user is able to understand the interface presented in a given
language. More sophisticated methods and larger gaze pattern
samples are still required to estimate exact proficiency levels,
as shown in previous work.

We can conclude that the answer to RQ2 is positive — it is pos-
sible to build a reliable automated system that will promptly
detect whether a user is able to comprehend the content pre-
sented in a given interface. An emergent question is how these
systems can be used in practice and what technical prerequi-
sites are needed for deployment. Below, we further elaborate
on RQ2 by providing a set of four technical guidelines for
implementing language-aware systems that use gaze data.

Guidelines for Language-Aware Interfaces
Based on our classification analysis, we propose the following
technical guidelines for interfaces that are to be designed to
be aware of the user’s language proficiencies.

Firstly, we recommend that designers of future systems adapt
the cost function of the classifier as well as the class dis-
tribution to their particular application. The application
scenario highly influences classification accuracy, as we have
shown when grouping different proficiency levels for binary
classification. Fine-grained detection down to the proficiency
levels of the CEFR [8] did not deliver satisfying accuracy.
Cost functions can be introduced to better fit the use case sce-
nario. Here, a compromise has to be made between a more
eager assistance system and a more rigorous one. Depending
on the application scenario, one might opt for either direc-
tion. Besides adjusting the cost function, changing the class
distribution is also a possibility, e.g. when considering ad-
vertisement banners instead of public displays in an airport.
Hence, determining whether a user is able to use an interface
in a given language from gaze properties is entirely possible.
Achieved accuracy depends on the application scenario and the
selected proficiency levels. If fine-grained detection and high
accuracy is needed, e.g. in an language education software
that observes the learning process of a student, other sources
of context should be used in conjunction, while eye tracking
can provide an auxiliary input.

Secondly, we suggest a minimum interaction period of
three seconds and a sampling rate not less than 100Hz,
while lower rates might still be applicable for specific scenar-
ios. In our study, we evaluated how long and how often a
language-aware interface should record eye movements of in-
teracting users. Higher resolution or longer recording duration
only slightly improve classification results. These findings
confirm the feasibility for language-aware interfaces in public
displays, as “calibration time” is short enough for user interac-
tion and sampling rate is not too high for low-cost eye-tracking
devices.

Especially for public displays or similar interfaces, we recom-
mend to ensure that light sources do not interfere with the
recording. Locations of public displays are diverse in light-
ing and environmental conditions. Bad lighting can lead to

artifacts during gaze recording and hinder classification. This
hardly poses a problem in buildings or underground, yet dis-
plays positioned outside can be problematic due to the infrared
radiation from the sun. Gaze recording that does not rely on
infrared video-based eye trackers can solve this problem, if the
technique is accurate enough. In combination with regression-
based models [4], it is possible to explicitly learn for distinct
gaze characteristics such as fixations, circumventing the need
for accurate gaze data in the first place.

Finally, we remind designers to guide the user into a suitable
interaction range. Reliable tracking is possible only within
a rather limited sweet spot. Solutions to solve this problem
have already been shown in GazeHorizon [52] and Gravi-
tySpot [1]. If eye-tracking is to be used in a public display
scenario, additional challenges need to be considered [33].

Limitations
The scope of the current work addresses how gaze features are
discriminable for language proficiency. An adaptive language-
aware interface should consider additional probabilistic priors.
In this regard, we feel that modifications to our current classi-
fication approach (e.g., by adding a “location prior”15) holds
promise for subsequent work. However, we verified that profi-
ciency in a given language could not generalize to proficiency
in related languages16. Hence, further research has to be con-
ducted to evaluate different language-switching mechanisms
with regard to user experience and accuracy. Design guidelines
can serve to constrain the diversity of interaction behavior, in-
crease the predictability of desired behavior, which will render
interactions more predictable. If gaze behavior is predictable
based on screen content, e.g. predominantly horizontal sac-
cades when reading text vs a search pattern when viewing
pictures, the constraints on calibration accuracy are less se-
vere and interaction might be possible without prior per-user
calibration. Detecting blinks and fixations – as used in our
metrics – is feasible using only relative gaze data.

In our study, we used a set of languages that reflected the
possible linguistic abilities of our participant base. We mostly
selected languages that are spoken in Europe. However, we
believe that as long as reading direction and alphabet are
kept the same, the results of our study are reproducible with
other languages. Even reading direction might have only a
minor influence [37]. Statistics on whether the alphabet was a
confounding factor (e.g. Arabic, Greek) have shown that there
was no significant difference on the four metrics discussed
previously. Nevertheless, this was a subjective result based on
the subset of our used languages.

Another limiting factor was the uneven distribution of pro-
ficiency levels. Naturally, we had a lot of data samples for
non-proficient users, but missed out on proficient levels. B1-
level proficiency was especially rare among the participants.

Based on the application scenario, participants might react
differently. For example, when on a stressful trip figuring out

15E.g. emphasizing predominant languages at the system’s deploy
location.

16By comparing metrics for German C2 speakers between German
and Dutch.
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their next connection on an information display versus reading
questions during a calm lab study. This will likely introduce
another noise factor that influences the resulting data. The
nature of this noise and its impact in an in-the-wild system is
to be evaluated. Consequently, before deployment, extensive
pre-testing needs to be conducted for a particular interface to
determine what comprehension levels are required in a given
interaction scenario.

CONCLUSION AND FUTURE WORK
In this paper, we examined the perception of different lan-
guages and their influence on a person’s eye movements. Con-
trary to common approaches in reading comprehension, which
focused on post-hoc evaluations, we evaluated the feasibil-
ity of real-time language proficiency detection suitable for
language-aware interfaces.

In our study, we presented 150 questions in different lan-
guages to our participants and analyzed the effect of language
proficiency on certain gaze characteristics. We found that
proficiency had a significant effect on the average fixation
duration and refixation ratio as well as average blink duration
and total blink ratio measured over a maximum timespan of
4.5 seconds.

To effectively utilize these results in real-time adaptive infor-
mation displays, we proposed a classification scheme that re-
alizes language proficiency detection and recommended tech-
nical guidelines on recording duration and sampling rate of
the eye-tracking device. Moreover, if gaze behavior is pre-
dictable based on screen content, constraints on calibration
accuracy are less severe. Hence, it is well suited to be used
in public displays where “walk-up” interaction is required
[33]. Additionally, it enables the usage of less accurate and
cheap eye tracking devices as exact gaze position is not nec-
essary. We contributed a set of four technical guidelines for
deploying gaze-based language-aware systems. We hope that
these guidelines will help designers build real-life systems
that detect when the user does not understand the interface
language.

Further work that can benefit from our results includes tech-
niques for language switching. New approaches can attempt
providing a broader selection of initial languages, i.e. dis-
playing multiple languages at once or traversing a language
tree based on probabilistic “location priors” that allows fine-
grained proficiency classification. The user’s initial language
choice – given by the first gaze position – and the reading
direction enables alphabet detection. Yet, utilizing exact gaze
position would require a per-user calibrated eye-tracking de-
vice. Here, new methods on implicit calibration relying on
predicted gaze targets [25] or smooth pursuit as shown in
TextPursuits [27] are applicable. If access to fully calibrated
gaze data is available, more elaborate comparing methods are
possible, such as directly comparing scanpaths [14, 23] or
clustering approaches [42]. To foster research in this direction,
the data set is available to the research community for further
analysis and improvement on our institute’s homepage17.

17http://www.hcilab.org/publications/

We envision that our idea of real-time adaptive information
displays is not only applicable to language awareness, but also
holds true for higher level concepts, such as different forms of
graph visualizations, schematics or maps. This does imply that
such a system recognizes a user’s level of understanding and
it is able to switch to an appropriate visualization to assist the
user. We hope that our work will inspire further developments
that will yield more understanding on how gaze properties can
be used to build more efficient adaptive interfaces.
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